
Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm Lempel-Ziv Compression

EE5143: Information Theory

Feb 15, 2024

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

Introduction

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

Motivation

Problems with Huffman-coding
• We need to know a probability distribution P a priori
• Big block of text → we could count # of times a character occurs, giving us P

• Is offline
• Needs two passes through the text:

• for finding P

• for the encoding itself

• Does not work if we have a data-stream coming in

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

LZ Algorithms

• LZ algorithms are online
• Universal Code: Regardless of the input probability distribution, it performs nearly as

well as the optimum source code for that distribution
• Used in gzip, gif (Graphics Interchange Format)
• We will see:

• LZ77 (1977): the sliding-window version
• LZ78 (1978): the tree-structured version

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

LZ78 Algorithm

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

LZ78 Algorithm
Algorithm 1: LZ78 algorithm

1 p = 0
2 dictionary dict ← {}
3 F ← “”
4 while p ̸= end-of-file do
5 c is the character at position p

6 if F + c in dict then
7 p← p + 1
8 F ← F + c

9 else
10 Output: ⟨dict[F], c⟩
11 F ← “”
12 end
13 end

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

The info-theory of LZ78
• Consider the original string of length n

• Assume we broke it up into c(n) phrases (pieces)

Figure 1: Partitioning of the string

• Each phrase is broken up into:
• a reference to a previous phrase (log2 c(n))
• a letter of our alphabet (log2 |X |)

Number of bits used ≤ c(n)(log2 c(n) + log2 |X |)

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

Upper Bound on the number of bits used

• Assume all the elements of the dictionary are similar sized, of size k

Figure 2: Partitioning of the string

• 2kk ≈ n

• Also, c(n) = 2k

• =⇒ Number of bits used ≤ c(n) log2(c(n)) + c(n) = n + O(small)

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

Outline of Proof of Optimality of LZ78

Consider we have some sequence of iid rvs: X = (X1, X2, . . . , Xn)

• Assume x→ (y1, y2, . . . , yc(n)), with Y ’s being the encoded phrases

• Probability that this sequence occurs, P (X) =
∏n

i=1 P (Xi = xi)

P (X) =
c(n)∏
i=1

P (yi) =
∏

l

∏
|yi|=l

P (yi)

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

A bound on ∏
|yi|=l P (yi)

• Consider a particular length l

• Let cl be number of phrases in yi of length l

• We know that all yi’s are distinct =⇒
∑

i:|yi|=l P (yi) ≤ 1

Maximum value this term takes:

∏
|yi|=l

P (yi) ≤
(

1
cl

)cl

from (AM-GM) inequality

∑
|yi|=l

log P (yi) ≤ −cl log(cl)

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

One nice lemma

To prove:
∑

l cl log(cl) ≈ c(n) log c(n)

Proof

∑
l

cl log(cl) = c(n) log c(n) + c(n)
∑

l

cl

c(n) log
(

cl

c(n)

)
We have the constraint

∑
l

lcl = n. Given that,

∑
l

cl

c(n) log
(

cl

c(n)

)
≈ log n

c(n)

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

More slick tricks

Adding up over all lengths: log P (X) ≤ −
∑

l cl log(cl) ≈ c(n) log c(n)

Number of bits used ≤ c(n)(log2 c(n) + log2 |X |) ∼ c(n) log c(n)

nH(p) = −E[log P (x)] ∼ c(n) log c(n)

We’re done!

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

LZ77 Algorithm

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

LZ77 Algorithm
Algorithm 2: LZ77 algorithm

1 p = 0
2 while p ̸= end-of-file do
3 Find the longest match in the window for the lookahead buffer
4 if a match is not found then
5 ⟨0, c⟩, where c is the character is at position p

6 p← p + 1
7 else
8 Output ⟨1, T, L⟩, where we go T characters back and match a string of length L

9 p← p + L

10 end
11 end

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

Proof of Optimality of LZ77

Figure 3: Original Paper

Lempel-Ziv
Compression

EE5143:
Information

Theory

Introduction

LZ78 Algorithm

LZ77 Algorithm

QR Code for Further links

Figure 4: QR Code

	Introduction
	LZ78 Algorithm
	LZ77 Algorithm

