Lempel-Ziv

Compression

Lempel-Ziv Compression

EE5143: Information Theory

Feb 15, 2024

Lempel-Ziv

Compression

Introduction

Introduction

Lempel-Ziv

Compression

EE5143
Information

T heor

Introduction

Motivation

Problems with Huffman-coding

We need to know a probability distribution P a priori

Big block of text — we could count # of times a character occurs, giving us P
Is offline

Needs two passes through the text:
® for finding P
® for the encoding itself

Does not work if we have a data-stream coming in

Lempel-Ziv

Compression

LZ Algorithms

Introduction

LZ algorithms are online
Universal Code: Regardless of the input probability distribution, it performs nearly as

well as the optimum source code for that distribution

Used in gzip, gif (Graphics Interchange Format)

We will see:
® LZ77 (1977): the sliding-window version
® LZ78 (1978): the tree-structured version

Lempel-Ziv

Compression

LZ78 Algorithm

LZ78 Algorithm

Lempel-Ziv

Compression

LZ78 Algorithm

Algorithm 1: LZ78 algorithm

1p=0
LZ78 Algorithm

2 dictionary dict + {}

3 F 7

4 while p # end-of-file do

5 c is the character at position p
6 if I'+ c in dict then

7 p—p+1

8 F+F+c

9 else

10 Output: (dict[F],c)

11 F««
12 end

Lempel-Ziv

Compression

The info-theory of LZ78

® Consider the original string of length n

L278 Algorithn ® Assume we broke it up into ¢(n) phrases (pieces)

c(n) many partitions

Figure 1: Partitioning of the string

® Each phrase is broken up into:

® a reference to a previous phrase (log, ¢(n))
® a letter of our alphabet (log, | X|)

Number of bits used < ¢(n)(log, c(n) + log, |X])

Lempel-Ziv

Compression

Upper Bound on the number of bits used

Information

T heor

® Assume all the elements of the dictionary are similar sized, of size k
LZ78 Algorithm

| Kbits | kbits l .. | Kbits |

N >y
v

2Ak many phrases
Figure 2: Partitioning of the string
e 2L x~n

® Also, c(n) = 2*

® —> Number of bits used < ¢(n)logy(c(n)) + ¢(n) =|n + O(small)

Lempel-Ziv

Compression

Outline of Proof of Optimality of LZ78

LZ78 Algorithm

Consider we have some sequence of iid rvs: X = (X1, Xo,..., X,)
® Assume = — (Y1,¥2,- - -, Ye(n)), With Y's being the encoded phrases

® Probability that this sequence occurs, P(X) = [[\-, P(X; = ;)

¢(n)

P(X):HP(yi):H H P(yi)

U lyil=l

Lempel-Ziv

Compression

A bound on I}, = P(y;)

® Consider a particular length [

LZ78 Algorithm .

® Let ¢; be number of phrases in y; of length |

® We know that all y;'s are distinct = >_, .., P(y:) <1

Maximum value this term takes:

from (AM-GM) inequality

Z log P(y;) < —c;log(cy)

lyil=l

Lempel-Ziv

Compression

EE5143

One nice lemma

L278 Algorithm To prove: >, ¢;log(c¢;) = ¢(n)logc(n)
Proof

=c(n)logc(n) + c(n —og |
zl:cllog(Cz)— (n)log ¢(n) + ¢)zl:c(n)1 g<0(")>

We have the constraint Zlcl = n. Given that,

l
X sy s (a) = 52t

l

Lempel-Ziv

Compression

EE5143

More slick tricks

LZ78 Algorithm

Adding up over all lengths: log P(X) < =3, ¢1log(c;) = ¢(n)log ¢(n)

Number of bits used < ¢(n)(logy c(n) + log, |X|) ~ ¢(n)log ¢(n)

nH(p) = —E[log P(z)] ~ ¢(n)log c¢(n)

We're donel!

Lempel-Ziv

Compression

LZ77 Algorithm

LZ77 Algorithm

Lempel-Ziv

Compression

LZ77 Algorithm

Algorithm 2: LZ77 algorithm

1p=0
eyl > while p # end-of-file do

3 Find the longest match in the window for the lookahead buffer

4 if a match is not found then

5 (0, ¢), where c is the character is at position p

6 p—p+1

7 else

8 Output (1,T, L), where we go T characters back and match a string of length L
9 p+<p+L
10 end

11 end

Lempel-Ziv

Compression

EE5143

LZ77 Algorithm

Proof of Optimality of LZ77

The Sliding-Window Lempel-Ziv Algorithm
is Asymptotically Optimal

AARON D. WYNER, FELLOW, IEEE, AND JACOB ZIV, FELLOW, IEEE

Invited Paper

Figure 3: Original Paper

QR Code for Further links

LZ77 Algorithm

Figure 4: QR Code

	Introduction
	LZ78 Algorithm
	LZ77 Algorithm

