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Abstract

The Newton Method for minimizing objective functions converges quadratically,

but is computationally expensive due to the calculation of the Hessian. We use

a subset of data to calculate a Hessian approximation, and adjust the search

direction to be a weighted sum of the approximate Newton directions of the

current and previous iterations.

Introduction

In supervised learning, the cost function is the average of the cost of data-

points (xi, yi) ∈ X , as follows: F (w; x, y) = 1
m

∑m
i=1 f (w; xi, yi)+Regularization.

Logistic loss function for binary classification
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The descent direction pk is obtained by solving ∇2Fkpk = −∇Fk using the

Conjugate Gradient Method to find p, but we replace the Hessian ∇2Fk by a

stochastic approximation from a set Sk:

HSk
= 1
|Sk|

∑
i∈Sk

∇2f (w; xi, yi)

PreviousWork (S1)

Richard H. Byrd et al. (2015) proposed using a random subsample of some

percentage Sk of the data-points to compute the Hessian at each step.

Find approx. Hessian→ CG to find direction→ Backtracking line search

This model (S1) performs similar orworse than the Exact Hessian on the news20

data (described later), because:

1. Running time ≈ NumIterations× TimePerIteration

2. The descent direction proposed here is sub-optimal due to sampling

3. Takes greater number of iterations to converge

The model (S2 & S3)

Chien-Chih Wang et al. (2019) suggest the following:

Picking a better initial value of α, i.e. αk = −∇f (wk)T dk

dT
k HSk

dk
(S2)

Pick the descent direction to be a linear combination of current and

previous Newton’s directions: pk = βk1dk + βk2d̄k, where d̄k = dk−1. We find

βk1 and βk2 by exact line search (S3)

We calculate βk1 and βk2 by setting ∇βf (β) = 0.

Intuition on why d̄k = dk−1 works: By using a linear combination as above, we

use second-order information, which is better than what we used before!

The Algorithm

1: InitializeWeights w ← 0, CG max limit maxCG, initial sample S0 ⊆ X
2: while ∇JX(wk) 6= 0 do
3: Evaluate JX(wk), ∇JX(wk)
4: Solve ∇2JSk

(wk)dk = −∇2JXk
(wk) using Conjugate gradient method.

5: d̄k ←dk−1
6: pk ← βk1dk + βk2d̄k, with β calculated exactly

7: Update wk+1← wk + αkpk, with αk as above.

8: Choose a new Sk+1 stochastically

9: end while

Simulation Results on Logistic Regression

Datasets: news20 & phishing, two different binary classification datasets

tackled using logistic regression with L2-regularization

Replicating the results in the paper, we draw the following conclusions:

1. This model (S3) performs better than just subsampling naively (S1)

2. This model converges more smoothly than other methods

3. We observe the strong correlation between maxCG and convergence

Further Improvements and Simulations (S4)

Instead of the descent direction d̄k = dk−1, d̄k = −∇Fk is suggested in the

paper, leading to the descent direction being a linear combination of the steepest

descent direction and current approximate Newton direction. We find this

gradient exactly, not stochastically.

phishing dataset: S4 produces better results, believed to be because

number of features << data-points

news20 dataset: S4 produces similar results, believed to be because

number of features ≈ data-points

Conclusions

Superiority of this model S3 over the prior model S1 and the Full Hessian,

showing 20%-40% reduction in running time

The percentage of the dataset used in the stochastic approximation is

affected strongly maxCG, i.e. percentage ∝ 1
maxCG

Proof of concept of the suggestion, by simulating the gradient in the

descent direction in S4, thus validating the hypothesis in the paper

Why does all this matter?

This paper improves the machinery to work on answering yes-no questions

using logistic regression in medical screening, quality control in industries,

and so on. It also tackles the theoretical aspect, improving our knowledge

repository on optimization techniques using the Newton’s method.
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