
Approximation Algorithms:
Connected Dominating Set

Haricharan & Abhinav

October 23, 2023

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Outline
We’ll learn all these!

Exploring the problem and the theoretical lower bound on α

Goal of the Session

Colours of Nodes

The Algorithm

Proving that we get a connected set

Proving that we get a dominating set

Terminology: singly- and doubly-counted vertices

Defining costs of nodes

Proving the approximation guarantee!

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Connected Dominating Set
Exploring the Problem

Consider a graph G (E ,V). A connected dominating set S is a set of vertices that has
two properties:

The induced subgraph of S in G is connected

Every node in V is either in S or adjacent to a node in S

Our goal is to discover the minimum-cardinality connected dominating set. Solving
this problem is NP-Hard, so we try to come up with an approximation algorithm for it.

Theoretical Lower Bound on α

We can’t come up with an approximation algorithm that gives us α < log n.

If we get an approximation factor α = H(2∆) + O(1) , where ∆ is the

maximum-degree, we’re doing very well!

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Examples of CDS

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Local Information in Graphs
What is it and why even use it?

Local information - each step of the algorithm doesn’t require information of the
full graph to make a decision.

In the CDS algorithm, we are only concerned with vertices at most 2 edges away
from any vertex we picked up in our dominating set so far.

Useful in settings where the entire graph isn’t revealed to us at once and we have
to load portions of it at a time - ex: a social media graph.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Historical Note

1 Guha and Khuller (1998): two algorithms

1 Centralized Greedy Approach: H(∆) + 2

2 Local Information Greedy Approach: 2H(∆) + 2

2 There is a penalty factor of “two” above, when we limit ourselves only to local
information.

3 Natural question: Can we get a H(∆) bound using only local information?

4 This paper, Revisiting Connected Dominating Sets: An Almost Optimal Local
Information Algorithm (2019)1, answers it in the affirmative

1Khuller is one of the authors of this paper as well, returning to the problem with a better result
after 20 years!

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

An overview of the algorithm

At each step of the algorithm, we maintain a set S of vertices that are picked to
be in the dominating set.

When choosing the next vertex to be picked up, we consider candidates only from
the two-hop neighborhood of S (denoted as N2(S)) - the set of vertices v such
that there exists a path of length at most 2 between v and some vertex in S .
(Note that S is included in its two-hop neighborhood!)

S need not be connected during intermediate stages of the algorithm. However,
the final output will be a connected set (this will be proved later)

Analysis will be done similar to Set Cover - Each time we add a vertex to S , we
distribute a unit cost among vertices that it affects.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Colours of Nodes
Why colour nodes suddenly? You’ll see!

At each stage in the algorithm, every node can be:

Black: We’ve picked the node in our solution set, i.e. u ∈ S

Gray: This node is adjacent to a node that is black

White: Every other node in our graph

Note that when we output our solution, we should have only black and gray nodes,
and no white nodes (else we wouldn’t have a dominating set)!

Also observe that every node in S is black, every node in N1(S) \ S is gray, and every
node in N2(S) \ N1(S) is white.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Example of Colours of Nodes

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

The Algorithm
2-Hop Local Information

wv : Number of white nodes in N1(v) (this includes v itself)2

cv : Number of black connected components adjacent to v

Initialise S to contain only some arbitrary vertex s. Set V̄ to N2(s)

Find vertex v in V̄ with the maximum value of 2wv + cv − 1, breaking ties
arbitrarily

Add v to S , and update V̄ to be N2(S)

Update cv ,wv values for all vertices in V̄

Repeat from step 2 until all vertices in V̄ have 2wv + cv − 1 ≤ 0, then terminate.

2This includes white nodes that are not in N2(S), so technically we have partial information of
N3(S)

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Algorithm Running

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Proof that we get a connected set

Proof by Contradiction: Assume that when our algorithm terminates the set is not
connected. Consider there are two components, C1, and C2.

When the algorithm terminates, there is at least one node in C2 that is at a distance of
2 from C1 (why? 3). Let this node be u. Let the node between u and C1 be v .

For the node v , cv ≥ 2, =⇒ 2wv + cv − 1 > 0, so our algorithm would not have
terminated. This is clearly a contradiction.

3We start with a black connected component, and only pick up vertices (turning them black!) in
the 2-hop neighborhood.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Proof that we get a dominating set

Proof by Contradiction: Assume that the set is not dominating.

=⇒ ∃ Some white node v ∈ N2(S).

For this node, v ∈ N1(v),wv ≥ 1, =⇒ 2wv + cv − 1 > 0, so our algorithm would not
have terminated.

This is a contradiction, so our assumption is wrong!

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Proof Outline
Interesting

Define a quantity called cost

Each time we pick a vertex, we’ll share one unit of cost among its neighbours

We’ll then bound the total cost each vertex holds at the end of the algorithm

Finally, we’ll use the fact that
Sum of Costs of Vertices = Number of Vertices Picked , so if we’ve bounded the
costs, we’ve bounded the number of vertices also

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Terminology
We need this for analysis!

We call each vertex in the final solution either singly- or doubly-counted4, depending on
how many times the vertex receives shares in the solutions. We share costs such that:

All white nodes are not counted

All gray nodes are doubly-counted

Black nodes can be singly- or doubly-counted. But, each black component has
exactly one singly-counted black node.

Note

When our algorithm is done, we’ll have only one component, so every node will be
double-counted except for one node!

4The paper calls this singly- or doubly-charged, which can be confusing since they call the cost
charge as well

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

How to assign cost?
This would help us in the bound

Every time we add a vertex to the solution set, we pay a cost5 of 1 unit. This cost is
then distributed among the neighbors of the vertex as such:

When we pick up vertex v , define one share as a cost of 1
2wv+cv−1 .

White Node: cv = 0, so we have 2wv − 1 shares in total. Distribute 1 share to v
itself and 2 shares to all the remaining wv − 1 white nodes adjacent to it.

Grey Node: For each of the wv white nodes around v , distribute 2 shares. For
each black components around this node, except one (which can be chosen
arbitrarily), distribute 1 share to each of them. This one share is given to the
singly counted vertex in that component, thus ensuring that the final connected
black component has only one singly counted vertex.

5The paper calls this charge
Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Example Cost Sharing

Figure: Charging u and v respectively

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Cost Sharing Example

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Some Definitions and Observations

The cost of any vertex at any stage is the sum of shares it has received in all steps
so far. (Note that shares received in different steps may have different values)

The cost of any set of vertices (which in our case will be a partition) at any stage
is the sum of shares of all the vertices in it.

Note: The sum of costs over all vertices at any stage is the number of vertices we
picked up.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Proof of the Bound
Partitioning V

Consider a partition of V into S1, S2, . . . ,S|OPT |, where Si contains a vertex vi and its
immediate neighbours. Assume that we’ve picked the vertex vi in OPT . Break ties
arbitrarily.

Also define, in Step j :

1 w j
i : Number of white nodes in Si

2 bji : Number of singly-counted black nodes in Si

3 c ji : Number of black components connected to vi

4 pji = 2w j
i + bji − 1

bji ≤ c ji ∀i , j

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Some bounds
We will use these in our proof!

Observe that pji can be thought of as the potential amount of shares we can give to

vertices in Si . Assume the cost in Si changes in step j . Then, pji − pj+1
i ≥ 1.

If the countedness of a node did change, we have three possibilities:

White to Black: changes by one unit or two units

White to Gray: changes by two units

Singly-counted black to doubly-counted black: changes by one unit

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

More Bounds:
We will use these in our proof!

Consider all the steps j before vertex vi is selected. Let some other vertex v be picked
in such a step. Now, we know that:

2w j
v + c jv − 1 ≥ 2w j

i + c ji − 1 ≥ 2w j
i + bji − 1 = pji

Total change in cost in Si in the jth step is:
pji−pj+1

i

2w j
v+c jv−1

Now, as long as pji is positive, we can say that:

pji − pj+1
i

2w j
v + c jv − 1

≤
pji − pj+1

i

pji

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Starting the proof

But of course it is not always positive, it might be negative also. There is some step ki
such that pkii is positive but pki+1

i is negative.

Total cost in the first ki steps in partition i (defined as TC) is:

TC = 1 +

ki∑
j=2

pji − pj+1
i

2w j
v + c jv − 1

≤ 1 +

ki∑
j=2

pji − pj+1
i

pji
= 1 +

ki∑
j=2

pji∑
pj+1
i +1

1

pji

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Continuing the proof

TC ≤ 1 +

ki∑
j=2

pji∑
t=pj+1

i +1

1

pji
= 1 +

ki−1∑
j=2

pji∑
t=pj+1

i +1

1

pji
+

p
ki
i∑

t=p
ki+1

i +1

1

pkii

(Splitting the summation)

Define l = max{pki+1
i + 1, 1}

≤ 1 +

ki−1∑
j=2

pji∑
t=pj+1

i +1

1

pji
+

l−1∑
t=p

ki+1

i +1

1

pkii
+

p
ki
i∑

t=l

1

pkii

≤ 1 +

ki−1∑
j=2

pji∑
t=pj+1

i +1

1

t
+

l−1∑
t=p

ki+1

i +1

1 +

p
ki
i∑

t=l

1

t
(Using pj+1

i ≤ pji)

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Continuing the proof

TC ≤ 1 +

ki−1∑
j=2

pji∑
t=pj+1

i +1

1

t
+

l−1∑
t=p

ki+1

i +1

1 +

p
ki
i∑

t=l

1

t

≤ 1 +

ki−1∑
j=2

pji∑
t=pj+1

i +1

1

t
+

p
ki
i∑

t=l

1

t
+

l−1∑
t=p

ki+1

i +1

1

= 1 +

p1i∑
j=1

1

t
+

l−1∑
t=p

ki+1

i +1

1

= 1 + H(p1) + ((l − 1)− (pki+1
i + 1) + 1) = 1 + H(p1i)− (pki+1

i)

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

The last term
We forgot the last term

Since pki+1
i ≤ 0, we can have at most one more step.

Change in total cost in (k + 1)th step is upper-bounded by:

(pki+1
i − pki+2

i) · 1 ≤ pki+1
i + 1

Adding the previous equation and this equation:

Total cost in partition i over all iterations ≤ H(p1i) + 2

Note that p1i = 2w1
i + b1i − 1 ≤ 2w1

i + 1 ≤ 2∆ + 1

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Final Bound

We know that there are |OPT | many partitions.

Total cost in all partitions over all iterations = |OPT |(H(2∆ + 1) + 2)

But, we know that Total cost in all partitions over all iterations =
Number of vertices picked by our algorithm

This gives us a α = (H(2∆ + 1) + 2) approximation!

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

Some footnotes:

The above algorithm is a 2-Hop algorithm, because we look at all the nodes in
N2(S). If we look at nodes only in N1(S), it would be a 1-Hop algorithm, which
gives us a poorer bound.

The algorithm is a local-information algorithm. Why is this good? If we don’t
know about the entire graph, like say a Social Media Connection Graph, this is
ideal.

It is possible to get a H(∆) + 2
√
H(∆) + 1 (expected) approximation factor using

a randomized algorithm, suggested in the same paper.

Haricharan & Abhinav Approximation Algorithms: Connected Dominating Set

