
CS6130: Advanced Graph Algorithms

Haricharan & Abhinav

Vital Edges for (s, t)− mincut: Efficient Algorithms, Compact Structures, and
Optimal Sensitivity Oracle

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

About the paper
Some general remarks!

Surender Baswana, Koustav Bhanja (IITK)

Published in arXiv publication in 2023

Contains:

Generalization of max-flow mincut theorem

Computation of vital edges

Efficient data structures for storing mincuts of vital edges

Sensitivity oracle for online updates of the graph and mincut queries

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Overview of the Presentation
We’ll cover all these today!

What are Vital edges?

Generalization of Maxflow-mincut theorem for an edge

Vital edges: tight and loose edges

Computing the tight edges

Computing the loose edges

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Introduction
What is a vital edge?

We have a directed graph G (V ,E) with edge weights w(e) : E → R, and two vertices
s and t.

Vital Edge

An edge e ∈ E is said to be vital if removing e decreases the capacity of the s-t mincut.
The vitality of an edge (wmin(e)) is the reduction in the capacity of the s-t mincut on
removal of e.

Note: wmin is called so because it is the minimum flow through the edge in any s-t
maxflow. Alternatively, it can be interpreted as the minimum weight the edge can have
without affecting the value of the s-t mincut.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Example of Vital edges

Note: Every edge in a mincut is a vital edge, but there are more vital edges!

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Example of Vital edges

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

A Small Lemma
We’ll be using this later!

Lemma

An edge e is a vital edge if and only if f (e) > 0 in every maximum (s, t)-flow in G.

Forward Direction (by contrapositive):

Let f (e) = 0 in some maxflow F .

Now, consider the same flow F in the graph G (V ,E \ {e}), and clearly this is a valid
flow.

By maxflow-mincut theorem, the value of the mincut also remains the same, and hence
e is non-vital.

Backward direction: Similar proof.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Mincut for an edge?

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Mincut for an edge

Among all the s-t cuts containing a particular edge e, the one with the minimum
capacity is called the mincut for that edge.

Denoted by C (e).

Convention: C (e) is a set of vertices, not edges.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

An Interesting Observation

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Generalization of Maxflow-mincut theorem for vital edges
GenFlowCut Theorem

Consider a mincut for a vital edge e, C (e). C (e) is a mincut for e iff there is a
maximum s-t flow such that:

fin(C (e)) = 0

Outgoing edges in C (e) \ {e} are saturated

f (e) = wmin(e), where wmin(e) is the amount by which mincut value decreases on
e’s removal.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Proof
The forward direction is similar!

Backward Direction:

C (e) is a cut for an edge e in graph G . Consider the maxflow f ∗ in G with the
properties mentioned before.

f ∗ = cG (C (e))− w(e) + wmin(e), or cG (C (e)) = f ∗ + w(e)− wmin(e) .

Now, cG\{e}(C (e)) = f ∗ − wmin(e) (this comes from the definition itself).

=⇒ C (e) is a s-t mincut in G \ {e}.

Hence, each s-t cut to which e contributes has capacity at least f ∗ − wmin(e) + w(e)
in G , and hence C (e) is a mincut for the edge e!

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Computing all vital edges

We can do this naively in O(m) flow computations, by just removing each edge from

the graph and finding the maxflow. But, we can do this in O(n) flow computations

actually!

Vital edges are characterized as:

Tight edge: A vital edge e is tight iff ∃ a maximum s-t flow which saturates e

Loose edge: Otherwise

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Example of Tight and Loose Edges

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Example of Tight and Loose Edges

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Computing Loose edges:

There’s a way to compute loose edges using O(n) flow computations. This is not very
illustrative for our purposes, so this method can be found at the end of our slides.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Computing Tight edges:

We will use the ancestor tree (explained later).

There is a way to get LCA in O(1) time (the usually way using binary lifting is
O(log n)).

The LCA in the ancestor tree gives a mincut for a particular edge, and of course
the value of the mincut.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree T (Cheng and Hu 1991)

Given a cost function for cuts F (C) (C is taken to be a set of vertices), the Ancestor
Tree answers the question: ”Given two vertices u, v , what is the cut of minimum cost
separating u and v?”

Preprocessing: O(n) min-cut computations (Note that these are not standard
max-flow mincut computations, but are of the form ”Find the cut with minimum F (C)
separating u and v”)

Time complexity: O(1) per query (if only capacity required) or O(|C |) per query (To
return the cut C)

Space complexity: O(n) if only capacities needed, O(n2) if cuts are also needed

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Using the ancestor tree to find vital edges

Suppose edge (u, v) is vital. Then by GenFlowCut, ∃ s-t cut C in which (u, v)
contributes and c(C) = f ∗ − wmin(u, v) + w(u, v).

The minimum capacity s-t cut C ′ that separates u and v has c(C ′) ≤ c(C) which
implies

c(C ′) ≤ f ∗ − wmin(u, v) + w(u, v)

c(C ′) < f ∗ + w(u, v) (Vital: wmin(u, v) > 0)

=⇒ c(C ′)− w(u, v) < f ∗

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Using the ancestor tree to find vital edges

Let F : C ⊂ V → R, F (C) =

{
c(C), s ∈ C , t ∈ C̄

∞, otherwise

If C is an s-t cut, then F (C) is its capacity. Otherwise, F (C) is infinite, ensuring all
the cuts returned are s-t cuts.

Now we can iterate over all edges (u, v). If the cut C separating (u, v) in the tree
satisfies c(C)− w(u, v) < f ∗ then the edge is vital. Since we already know the loose
vital edges, we take all the other vital edges to be tight.

Since the ancestor tree allows O(1) queries for the minimum separating cut capacity,
we now have an O(m) algorithm (+O(n) mincut computations initially).

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Caution

The cut stored in the tree is not necessarily the mincut for that edge!

Example of an edge (v1v2) where the minimum s-t cut separating its vertices is NOT
the same as the mincut of that edge:

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Construction

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Query

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Example of Query

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Summary

Each internal node of the ancestor tree has 3 properties

Two special ’seeded’ vertices u, v

The capacity of a minimum cut C separating u and v

And each leaf of the tree has 1 property:

A set of vertices V ′ ⊆ V (G)

Each internal node has two children (and thus two child subtrees): One such subtree
contains vertices in C and the other contains vertices in V ′ \ C .

The tree is constructed so that the capacity of minimum cuts increases as we go down
from the root.

The minimum capacity cut seperating any two vertices u and v is stored in the LCA of
leaves containing u and v .

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Ancestor Tree - Proofs

Intuition for why the process takes only n − 1 mincut computations:

T starts with only 1 leaf

Each mincut computation lets us add exactly 1 more leaf

When the construction ends, there are n leaves

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Computing loose edges:

For any directed weighted graph G, there exists a maximum (s, t)-flow f # in G such
that the number of edges that carry nonzero flow but are not fully saturated is at most
n − 1. These are “candidates” for loose edges, we can check what is the maximum
flow they can carry. This can be done by the algorithm.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Claim:

We have black box algorithm which gives maximum flow through an edge in any
maxflow.

The reduction:

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

The algorithm

There is a maxflow in G’ which carries f ∗ amount of flow through es and et .

Maxflow in G ′ is f ∗ + α implies and implied by α is the maximum flow through e
in any maxflow.

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Key Takeaways

There’s an equivalent of maxflow-mincut theorem for all vital edges (GenFlowCut)

We can compute all tight edges using the ancestor tree data structure

We can compute all loose edges by seeing which of them are candidates and just
checking each of them

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

Other things in the paper

O(m) space DAG partial characterization of all s-t mincuts

O(mn) space complete characterization of all s-t mincuts

Sensitivity Oracles: Online updates to edge weights and asking vitality queries

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

The QR:

Haricharan & Abhinav CS6130: Advanced Graph Algorithms

